Problema
1.
Un cilindro con un
pistón móvil contiene gas, la temperatura inicial es de 25ºC.
El cilindro se
coloca en agua hirviendo y el pistón se mantiene a una posición fija. Se
transfiere una cantidad de calor de 2kcal al gas, el cual se equilibra a 25ºC y
una presión más alta. Después se libera el pistón, y el gas realiza 100J de
trabajo para mover al pistón a su nueva posición de equilibrio, la temperatura
final del gas es de 100ºC.
a) Escribe
la ecuación de balance de energía para cada etapa.
b) Resolver
en cada caso el término desconocido de la ecuación de energía. Suponga que no
hay cambio de Ep del gas mientras el gas se desplaza en dirección vertical.
Resolución del
problema.
ETAPA 1.
Paso 1: Realizar un
diagrama para conocer la estructura del sistema.
Paso 2: En la etapa 1, vemos que es un sistema
cerrado con fronteras rígidas y nuestro sistema es el gas, el cual es a
volumen constante, por lo tanto es un proceso isocórico.
Paso 3: Empezamos a resolver el inciso a) del
balance de energía, que es la siguiente:
Eo
+ EE - Es – EL = EF.
Donde Eo= Eko + Epo.
Pero como el sistema no está en movimiento la
energía cinética gravitacional (Eko) y la energía potencial traslacional (Epo) es 0.
Entonces Eo=0.
Si se considera la energía interna la ecuación queda así:
Eo=Eko + Epo + Uf.
Entonces Vo=0 y Zf=0
Sustituyendo los valores en la ecuación:
Vo + Q - 0 - 0 = Vf.
Para la ecuación de la energía interna: ∆U= Uf- Uo = Q
Entonces la energía interna: ∆U= 2 kcal
Para la etapa 2:
Sabemos que el volumen aumenta y la temperatura es constante.
Teniendo la ecuación de balance: Eo + EE - Es – EL = EF.
Donde Eo=0 porque no existe una energía inicial
y EL= 0
También sabemos que la energía de entrada es el calor, por lo tanto EE= Q
La energía de salida es igual al trabajo, por lo tanto Es= W
La energía que pierde es igual a cero porque lo suponemos, por lo tanto EL=0
Sustituyendo los datos la ecuación queda así: EE= Es
Q=W y sabemos que Q=100 J
No hay comentarios:
Publicar un comentario